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The value of enantiopure 1,2-amino alcohols lies in their
utility both as intermediates for the synthesis of a wide range
of biologically important compounds1 and as precursors to
effective and versatile ligands for asymmetric catalysis.2 Exist-
ing synthetic routes to amino alcohols rely heavily on the chiral
pool,2b and particularly on the reduction ofR-amino acids. While
this approach provides ready access to many 2-amino-1-ols, the
regioisomerically transposed 1-amino-2-ols cannot be prepared
by this method. Asymmetric routes to the latter, synthetically-
valuable compounds include the nitroaldol reaction,3 hydrocya-
nation of aldehydes,4 asymmetric dihydroxylation,5 and the ring
opening of enantiopure epoxides by amines or amine equiva-
lents.6 The latter approach is direct and particularly appealing,
especially in light of the advances in the development of
enantioselective catalytic methods for the synthesis of epoxides.7

Still, there are several classes of epoxides that are not easily
accessed by asymmetric catalysis, with terminal alkyl-substituted
epoxides certainly heading the list in terms of importance.
Given the accessibility of a wide range of racemic terminal

epoxides at low cost, a kinetic resolution strategy for the
synthesis of optically pure 1-amino-2-alkanols becomes viable.
In this communication, we report the application of the recently
developed (salen)Cr-catalyzed epoxide ring-opening reaction8

to the efficient synthesis of 1-azido-2-trimethylsiloxyalkanes
from racemic epoxides (Scheme 1). The viability of this strategy
is illustrated in practical syntheses of (S)-propranolol, a widely-

used anti-hypertensive agent,9 and (R)-9-[2-(phosphonomethox-
y)propyl]adenine (PMPA), a compound recently demonstrated
to display prophylactic activity against SIV infection.10

The reaction of neat (()-propylene oxide with 0.5 equiv of
TMSN3 in the presence of (salen)CrN3 complex (R,R)-1 (1 mol
%) resulted in clean conversion to a mixture of epoxide and
ring-opened product after 18 h at 0°C. Removal of the highly
volatile unreacted epoxide by rotary evaporation, followed by
distillation of the residue at 24°C/<1 mm Hg, afforded 1-azido-
2-trimethylsiloxypropane in essentially quantitative yield based
on theory and in 97% ee (Table 1, entry 1).11 Careful analysis
of the product by GC revealed that the regioisomeric product
was formed to an almost negligible extent (<1%).
This method was found to be applicable to a series of other

terminal epoxides (Table 1). Unbranched alkyl-substituted
epoxides proved to be the best substrates with regard to
enantioselectivity, withkrel values exceeding 100 (entries 2, 3).12

The kinetic resolution of epichlorohydrin led to highly enriched
1-azido-3-chloro-2-trimethylsiloxypropane (entry 4), a reaction
that is particularly noteworthy given the availability of the
racemic substrate and the functional versatility of the optically
active product. Epoxides bearing branched alkyl substituents
displayed reduced reactivity but no loss of enantioselectivity
in the ring opening (entry 8). As has been demonstrated
previously in the context of meso epoxides,8 excellent functional
group tolerance was exhibited in these (salen)Cr-catalyzed
reactions (entries 9-11). The kinetic resolution of 3,3-
diethoxypropene oxide (entry 10) provided the ring-opened
product in 96% isolated yield and 89% ee, despite the presence
of a potentially epimerizable stereogenic center in the product.
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Tolerance for Lewis basic functionality such as cyano groups
(entry 11) is also noteworthy.
A wide range of synthetic applications of this kinetic

resolution procedure are readily envisaged. The synthesis of
propranolol outlined in Scheme 2 serves to illustrate the efficient
and straightforward elaboration of the azido silyl ether products
of the ring-opening reaction to a biologically important amino
alcohol derivative. Kinetic resolution of the racemic epoxide
derived from epichlorohydrin and 1-naphthol afforded the
corresponding azido silyl ether in 74% isolated yield and in
93% ee (entry 6). In a one-pot, two-step procedure, transforma-
tion to (S)-propranolol was accomplished by desilylation fol-
lowed by azide reduction andin situ reductive alkylation in the
presence of acetone.3c

The synthesis of (R)-PMPA13 was effected similarly in a
highly efficient manner via kinetic resolution of propylene oxide

(Scheme 3). A desilylation/reduction sequence yielded the
synthetically important amino alcohol (R)-1-amino-2-propanol
in excellent yield. Further transformation of this compound to
(R)-PMPA was accomplished using known methods by conver-
sion of the amine to an adenine base,14 followed by alkylation
of the alcohol and standard deprotection of the phosphonate.15

In conclusion, the application of (salen)CrN3-catalyzed ep-
oxide ring-opening reaction to the kinetic resolution of racemic
terminal epoxides allows not only the recovery of epoxides with
high enantiomeric excess,8a but also the clean production of
1-azido-2-trimethylsiloxyalkanes in good yield and very high
enantiopurity. The synthetic utility of these amino alcohol
precursors, combined with the ready accessibility of the racemic
epoxides and of the catalyst,16 renders this an immediately useful
alternative to existing methods. In addition, the extremely high
enantioselectivity on such simple substrates as propylene oxide
with attendant broad substrate generality suggest very intriguing
mechanisms for chiral recognition by this catalyst system. This,
along with the expansion of this methodology to other classes
of nucleophiles and electrophiles, constitutes the subject of our
sustained efforts.
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Scheme 3a

aReagents: (a) 0.5 equiv TMSN3, 0.5 mol % (S,S)-1, 0 °C f rt; 98%, 97% ee; (b) CSA (cat.), MeOH, 92%; (c) 10% Pd/C, MeOH, H2, 91%;
(d) 5-amino-4,6-dichloropyrimidine, TEA,n-BuOH, ∆, 82%; (e) HC(OEt)3, conc. HCl, rt, 86%; (f) NH3, 65 °C, 91%; (g) NaH, DMF,
diethylphosphonomethoxytosylate, 0°C f rt, 44%; (h) i. TMSBr, CH3CN, rt; ii. H2O, acetone, 4°C, 92%.

Table 1. Kinetic Resolution of Monosubstituted Epoxides with
Azidotrimethylsilane Catalyzed by1a

entry R
cat. mol

%
yield
(%)b ee (%) krelc

1 CH3 1.0 98 97d 230
2 CH2CH3 2.0 83 97f 140
3 (CH2)3CH3 2.0 89 97d 160
4 CH2Cl 2.0 94 95e 100
5 CH2OTBDMS 3.0 96 96e 150
6 CH2O(1-naphthyl) 5.0 74 93g 48
7 CH2C6H5 2.0 94 93f 71
8 c-C6H11 2.0 84h 97f 140
9 (CH2)2CHdCH2 2.0 94 98d 280
10 CH(OEt)2 2.0 96 89e 44
11 CH2CN 2.0 80 92e 45

aReactions were run without solvent for 18-50 h at 0-2 °C.
b Isolated yield of the azido silyl ether based on TMSN3. c See ref 12.
dDetermined by chiral GC analysis of the azido silyl ether.eDetermined
by chiral GC analysis of the azido alcohol.f Determined by chiral GC
analysis of the azidoO-acetate derivative.gDetermined by chiral HPLC
analysis of the azido silyl ether.h Isolated yield of the azido alcohol.
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